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Abstract

Few-Shot Learning (FSL) aims at identifying unseen objects using only a few
samples with supervised information available. The limited data in novel classes
usually follow a biased distribution, difficult for the model to learn. We proposed
Weighted-distribution Calibration (WC) to alleviate bias by generating more
data from the calibrated distribution of novel classes. We used transferred statistics
of all base classes with sufficient data to perform the calibration, weighted by the
distance between the novel class and base classes. With a backbone of ResNet-
12 and a logistic regression classifier, WC successfully improves the model’s
performance from a base accuracy of 57.33% to a surprising accuracy of 63.87%.
Our weighted calibration method can be easily combined with any feature extractor
and classifier, bringing a boost in Top-1 accuracy in FSL. We further experimented
with Vision Transformer (ViT) as a feature extractor. We found that, unfortunately,
due to high complexity and insufficient pre-training, ViT does not produce more
meaningful features as expected.

1 Introduction

Deep learning models have achieved great success in computer vision tasks such as image recognition,
image generation, and segmentation. However, the majority of these models are trained on a large
amount of labeled data and are limited when given images without training labels [26] or not enough
training examples [22]. In contrast, humans are good at recognizing a new object through a small
number of samples. For example, children only need a few pictures in the book to learn what a
“zebra” or “rhino” is. Inspired by the rapid learning ability of humans, fields like few-shot [5, 11] and
zero-shot [12] emerged to develop models that can classify images with new categories with small or
even non-existent training samples. Among the various popular approaches to few-shot learning, e.g.
meta-learning, metrics-learning, we chose to focus on the fine-tuning method, for its simplicity and
its promising results [14]. [14] achieved test accuracy of 60.63% for miniImageNet and 69.02% for
tieredImageNet under 1−shot 5−way setting, which outperformed many meta-learning based FSL
models with greater complexity.

Many previous approaches work on developing more robust models to learn better feature
representations. However, the most critical challenge in FSL is the limitation in the number of
training data. Therefore, we are focusing on the property of data itself. Common sense is that the
ground truth distribution can be more accurately uncovered with larger dataset. We proposed a



Weighted-distribution Calibration (WC) method which can approximately disclose the ground truth
distribution with the limited training data in FSL image classification tasks. WC can leverage the
statistics from base classes and calibrate the biased distribution due to limited training data.

Furthermore, another challenge in FSL is that the feature extractor trained on base classes
always contains irrelevant information to the objects that need to be classified. Therefore, we
introduce Vision Transformer (ViT) as a task-agnostic embedding learner. We expected ViT to pay
more attention to target objects, thus decreasing the redundancy in extracted features. Unfortunately,
it did not work well in our experiments, possibly, due to its loss of reception field.

2 Related Work

2.1 Problem Statement

There are three datasets in the FSL image classification task: labeled target support set S , unlabeled
target query set Q, and a class-disjoint auxiliary set A. S and Q share the same label space, whereas
A has a label space disjoint from that of S and Q. The concept of “few-shot” refers to the limited
samples supplied by the support set S , where there are C classes but each class only has K (e.g., 1 or
5) labeled samples. This kind of classification task is called C-way K-shot.

2.2 Fine-tuning based methods

Figure 1: Fine-tuning based methods

Fine-tuning based method is one of the most popular FSL methods, consisting of two-stages, i.e.,
standard pre-training with base classes and fine-tuning with novel classes. In the training stage, the
whole auxiliary set A is used to train a classification model, including a feature embedding extractor
fθ(·) and a N base-class classifier Cω(·), using the standard cross-entropy loss LCE as below,

Γ = argmin
θ,ω

N∑
i=1

LCE(Cω(fθ(Xi)), y) (1)

In the test stage, we retain the feature embedding extractor fθ(·) from the train stage and preserve
the parameters. Afterwards, for each specific novel task T = ⟨S,Q⟩, a new C-class classifier will be
re-learned based on S every time.

Many fine-tuning based methods are proposed. [2] follows the standard transfer learning
procedure of network pre-training and fine-tuning. Baseline [2] adopts a linear layer, i.e., a
fully-connected (FC) layer, as the new classifier. Baseline++ [2] replaces the standard inner product
(in the FC layer) with a cosine distance between the input feature and weight vector. RFS-simple [2]
employs logistic regression instead of the FC layer as the new classifier by first using ℓ2 normalization
for the feature vector. SKD-GEN0 proposed in [18] also use logistic regression as the classifier as
same as RFS-simple [2], where the only difference is that additional rotation-based self-supervision
is further introduced into the pre-training stage. In addition, both [2] and [18] develop an extended
version using knowledge distillation [8]. [16] proposed an embarrassingly simple baseline with
random pruning, boosting the performance drastically. The boost is thought to be caused by reduction
in redundancy.
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2.3 Other methods

Meta-learning based methods Meta-learning based methods[6, 7, 18, 1, 19, 17] normally perform
a meta-training paradigm [20] on a family of few-shot tasks constructed from the base classes at
the training stage. Meta-learner is trained in the training stage, enabled to be fast adapted to novel
classes in S at the test stage. [6] is one popular representative method, whose core idea is to train a
model’s initial parameters by involving the second-order gradients, enabling this model to rapidly
adapt to a new task with just one or a few gradient steps. [1] is designed from another perspective,
by adopting a standard machine learning algorithm such as ridge regression as the base-learner
classifier Cω(·) in the inner loop. LEO [19] and ANIL [18] follows the same optimization procedure
as MAML[6] with some optimization in parameters space.

Metric-learning based methods Different from the two-loop structure of meta-learning based
methods, metric-learning based methods [21, 15, 22, 13, 9] directly compare the similarities/distances
between the query set and support set in each meta-like task through one single feed-forward pass
through the episodic-training mechanism [24]. At the training stage, the standard cross-entropy loss
is usually employed to train the entire model. During the test stage, the nearest-neighbor classifier
(1-NN) can be conveniently used for prediction.

3 Methodology

As we mentioned in Section 2, we use an auxiliary set A and a support set S for our train and test
stages respectively. We transfer statistics from base classes in A to effectively generate data from the
calibrated distribution of novel classes in S . In the following sections, we describe our adaptive data
generation method specifically for 1-shot learning.

3.1 Tukey’s Ladder of Powers Transformation

We implement Tukey’s Ladder of Powers transformation [23] on features of samples in auxiliary,
support set and query set to make the corresponding distribution more Gaussian-like to better leverage
statistics transformation. One problem in performing Tukey’s Ladder of Powers transformation is
that the transformation assumes all positive input data, yet it is possible for our feature extractor to
produce negative features. Our solution is to use ReLU to shift all data to the positive domain. Then
we perform Tukey’s transformation on the shifted data,

x̃ =

{
xβ , if β ̸= 0

log(x), otherwise
(2)

where the β is a hyperparameter to adjust how to correct the distribution. Here we have two
hyperparameters βbase for base class features transformation and βnovel for novel class features
transformation.

3.2 Statistics of the Base Classes

Given any pretrained feature extractor, we compute the mean and covariance matrix of the base
classes, assuming they follow a Gaussian feature distribution. We first perform Tukey’s Ladder of
Powers transformation on all feature vectors x and obtain x̃. For each base class i, mean µi and
covariance matrix Σi are computed as follows:

µi =

∑
x̃j∈Ai

x̃j

ni
, Σi =

1

ni − 1

∑
x̃j∈Ai

(x̃j − µi)(x̃j − µi)
T (3)

where Ai = {x̃|(x̃, y) ∈ A ∧ y = i}.

3



Algorithm 1 5-way 1-shot testing procedure with weighted calibration and data generation

1 % requires: support and query set features of 5 novel classes S,Q
2 % requires: base class means and covariances {µi}, {Σi}, i = 1, 2, · · · , Nbase

3 % returns: prediction of query set
4 for Sc ∈ S:
5 # Sc: support set feature and label of novel class c
6 (xc, yc) = Sc

7 x̃c = tukey_transform(xc)
8 D = euclidean_dist({µi}, x̃)
9 S = softmax(D)

10 µ′,Σ′ = weighted_calibration(x̃c,{µi},{Σi},S,k)
11 (X̃

′
c, y

′
c) = multivariate_normal(µ′,Σ′)

12 Xaug = concatenate([x̃c,X̃
′
c])

13 Y aug = concatenate([yc,y′c])
14 model = classifier(Xaug,Y aug)
15 return model(Q)
16

3.3 Calibrated Statistics of the Novel Classes

We first obtain x̃ from x using Tukey’s Ladder of Powers as shown in Equation (2).

Then we calibrate the novel class distribution using the transferred statistics from the base
classes. The similarity scores are measured by the Euclidean distance. That is, for base class i, we
calculate the distance vector Di:

Di = −∥µi − x̃∥2, i = 1, · · · , Nbase (4)

where x̃ is the feature vector of the support set.

Instead of simply averaging the mean of the top k base classes to calibrate the distribution
of the novel class as in [25], we propose a weighted calibration:

µ′ =

∑Nbase

i=1 µiSi + x̃

2
,

Σ′ =
∑
i

ΣiSi + α,

Si = softmax(Di), i = 1, · · · , Nbase

(5)

where Si is the weight for each pair of (µi,Σi) normalized by distance such that
∑

i Si = 1. α is a
chosen hyperparameter constant that gets added to each element of the estimated covariance matrix,
which determines the degree of dispersion of features sampled from the calibrated distributions.

3.4 Leveraging the Calibrated Distribution of the Novel Classes - Data Sampling

We then collect the statistics from the last section and denote the set of results as Sy =
{(µ′

y,1,Σ
′
y,1), · · · , (µ′

y,d,Σ
′
y,d) }, where µ′

y = [µ′
y,1, · · · ,µ′

y,d] and Σ′
y = [Σ′

y,1, · · · ,Σ′
y,d]

are calibrated mean and covariance of the features in the support set of class y and d denotes the
dimension of feature vector.

With Sy for class y, we are able to obtain generated data sample:

Dy = {(x, y) | xi ∼ N (µ′
y,i,Σ

′
y,i),∀(µ′

y,i,Σ
′
y,i) ∈ Sy} (6)

where x = [x1, · · · , xd] denotes the generated feature vector.
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We then train the classifier to minimize the following loss function ℓ:

ℓ =
∑

(x,y)∼S̃∪Dy,y∈YT

− log Pr(y|x; θ)
(7)

where YT is the set of classes for the task T and S̃ is the support set with transformation.

The whole procedure of 5−way 1−shot task test is shown in Algorithm. 1.

4 Experiment

4.1 Setup

Dataset We used the miniImageNet dataset. The miniImageNet dataset was proposed by Vinyals
[24]. For few-shot learning evaluation, its complexity is high due to the use of ImageNet images
but requires fewer resources and infrastructure than running on the full ImageNet dataset. In total,
there are 100 classes with 600 samples of 84 × 84 color images per class. These 100 classes are
divided into 64, 16, and 20 classes respectively for sampling tasks for training, validation, and test.
For training, we used a subset of 20130 images in total.

Training, Fine-tuning & Testing For all baseline models in the training stage, we construct a
ResNet12 backbone with 64 output classes, which is trained for 50 epochs using an Adam optimizer
with a learning rate of 1e− 3 and a batch size of 4. We then perform fine-tuning under the 5-way
1-shot classification setting. For each support set data, we test with 15 query samples. In data
generation, we set α to be 0.21 and the β value to 0.5 as in the original paper. In the test stage,
we perform a round-test1, where all 20 classes in the query set are tested for their accuracy, and an
average test accuracy is obtained by taking the mean of all 20 results.

Baseline Model We implemented a vanilla fine-tuning baseline using ResNet12 as the backbone
and Logistic Regression as the classifier. We chose this baseline for the convenience of quantitatively
comparing the effects from our two proposed improvements described in Section 3 above.

4.2 Hyper-Settings and Parameters

Converting features to Positive Domain We consider ReLU and softmax transformations to
ensure the positivity of features before the Tukey’s Ladder of Powers transformation. We experiment
with both transformations and land on ReLU for the better performance. We hypothesize the reason
why ReLU outperforms softmax is that it preserves the linearity in the data that contains lots of
essential information for the classifier to make correct predictions. On the contrary, the softmax
operation skews the data distribution exponentially.

Hyper-parameters for Data Transform We focuse on three parameters in total: α in the weighted
calibration (equation 5), βnovel and βbase in Tukey’s Ladder of Powers transformation. We perform
a grid search separately on each variable. The default values are as follows: βnovel = 0.5, βbase =
None, and α = 0.21. When tuning one hyper-parameter, we set the other hyper-parameters to the
aforementioned values.

We experiment across βnovel and βbase ranging from 0.0 to 1.0 with the step size of 0.1, and then α
from 0.00 to 1.00 with the step size of 0.01. We conclude that the best value for α, βnovel and βbase
are 0.0, 0.9, and 0.5. The results are shown in table 1.

5 Results

From the data in Table 2, our results are higher than that of our baselines and are comparable to a
couple of SOTA models. We produced 63.87% with weighted calibration just on the support set and
62.00% with weighted calibration on the support set plus Tukey’s transformation on the base classes.
The two approaches yielded 11.4% and 8.1% increase from the baseline. We cannot conclude with
existing data that incorporating Tukey’s transformation on the base class necessarily leads to better
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Table 1: Results of Hyper-parameter Grid Search on ResNet-12, round-test1, and Euclidean
distance.

Hyper-parameter Search Range Best Value

βnovel - correct the distribution [0.0, 1.0] step 0.1 0.9
βbase - correct the distribution [0.0, 1.0] step 0.1 0.5
α - calibrate covariance matrix [0.00, 1.00] step 0.01 0.0

1 Round-test means we only test each novel class once in the test tasks and each class is guaranteed to be tested
in one test task.

Table 2: Reproduction and Model Experiment Results on miniImageNet. Results are reported
with the mean accuracy over 10 5−way 1−shot test tasks. Some of the results are reported by
LibFewShot for fair comparison with imput image size of 84 × 84 and task-specific classifier of
Logistic Regression.

Methods Feature Extractor Reported Acc (%) Test Acc (%)

Baselines

Baseline[2]1 ResNet-12 57.47 57.33
Baseline++[2]1 ResNet-12 51.15
Distribution Calibration[25]2 WideResNet 68.57
Distribution Calibration[25]2 ResNet-12 54.13

SOTA

RFS-simple1 ResNet-12 61.00
RFS-distill1 ResNet-12 63.27
MTL ResNet-12 60.20
DN4 ResNet-12 54.37
CAN ResNet-12 63.85

Ours
No Calibration ResNet-12 55.33
Weighted Calibration ResNet-12 63.87
Weighted Calibration (BC3) ResNet-12 62.00

1 Reported by LibFewShot[14], a unified Few-Shot Learning library.
2 Calibrated with transferred statistics from Top-2 base classes.
3 Used Tukey’s Ladder of Powers Transformation on base classes’ statistics.

accuracy results as the bump from 62.00% to 63.87% could be attributed to random error, but the
bigger jump of 11.4% and 8.1% shows that weighted calibration is helpful for yielding more accurate
test results in few-shot learning.

Furthermore, we observe that there is a decrease of test accuracy from the baseline adopting the top-2
transferred statistics approach proposed in [25]. We think this could be attributed to the fact that, in a
case where one base class is extremely close to the novel class, averaging across the two closest base
class could yield worse calibration. On the other hand, our proposal of using weighted calibration
could have gotten better results as it takes into consideration of the relative distance between classes.

In addition, we compare against Top-2 calibration and saw that it did not provide any substaintial
increase in test accuracy compared to data generation only. We suspect that the proclaimed perfor-
mance enhancement brought by Top-2 calibration is mostly attributed to data generation instead of
calibration, whereas the weighted calibration provided the substantial improvement.

6 Ablation Study

We identify four stages in our final pipeline – Tukey’s transformation on the base classes, Tukey’s
transformation on the novel classes, weighted calibration, and data generation. In an effort to show
the effectiveness of each stage separately, we did an ablation study to compare and contrast the test
accuracy contributed by each stage. As shown in Table 3, we see a substantial increase by adding
weighted calibration, which further confirms our interpretation earlier in Section 5. There are less
substantial increases by adopting Tukey’s transformation on the novel classes and the base classes,
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Table 3: Ablation Study on ResNet-12/Logistic Regression/round-test1 setting.

Weighted Calibration Novel Class Transform Base Class Transform Data Generation2 Test Acc (%)

✓ ✓ ✓ ✓ 60.33
✓ ✓ ✓ 60.00
✓ ✓ 59.33

✓ 55.00
55.33

Top-2 Calibration ✓ ✓ 55.00

1 Round-test means we only test each novel class once in the test tasks and each class is guaranteed to be tested
in one test task.
2 If generated, a fixed number of 750 new samples following the calibrated distribution are generated.

but we still observe some increase in test accuracy, which suggests that conforming the data to a more
Gaussian distribution is still helpful.

7 Transformer-Based Feature Extractor

7.1 Why introducing a Transformer?

We believe that vision transformers[3] might be effective in differentiating the local and global
features certain images possess, therefore we propose a transformer-based task-agnostic embedding
learner for Few-Shot Learning. Our embedding learner follows the standard architecture of a vision
transformer encoder, as shown in Fig.2. This vision transformer-based embedding learner reshapes
the 2D image into a sequence of flattened 2D patches, linearly embeds each of them, adds position
embeddings to retain the positional information, and feeds the resulting sequence of vectors to a
standard transformer encoder. Such transformer-based embedding learner is only trained on base
class data and is not updated in FSL meta tasks.

In the training stage, we train a base image classification model consisting of this vision
transformer-based embedding learner f(·) and a classifier c(·). The base model is trained with
cross-entropy loss on the auxiliary set A. After a certain period when we are confident that the learner
has learned enough to conduct feature extraction, we fix the parameters of the embedding learner. We
then extracted the feature embeddings of the auxiliary set A. We used a vision transformer (ViT)
feature extractor that used 64 labels, that take in 84× 84 images, 6 hidden layers, 12 attention heads.
The transformer has a hidden size of 768 and an intermediate size of 1536.

Transformer Encoder

MLP 
Head

Linear Projection of Flattened Patches

0 * 1 2 3 4
Patch + Position  

Embedding 

* Extra learninable  
[class] embedding

Transformer EncoderVision Transformer (ViT)

Embedded  
Patches

Norm

Multi-Head 
Attention

+

+

MLP

Norm

L x
Class

Figure 2: Vision Transformer (ViT) Classifier Overview
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Table 4: Vision Transformer Experiments Results on miniImageNet.

Methods Feature Extractor Test Acc (%)

No Calibration ResNet-12 55.33
Distribution Calibration[25]2 ResNet-12 54.13
Weighted Calibration ResNet-12 63.87
No Calibration ViT 32.67
Distribution Calibration ViT 31.33
Weighted Calibration ViT 33.00

7.2 Experiments with Vision Transformer as Feature Extractor

Although self-attention-based models are widely shown effective in extracting features from focused
objects, the experiment results shown in Table 2 suggest that using ViT did not boost performance
in few-shot learning task as expected. There may be several reasons for this. First, transformers
generally require large-scale pre-training [10]. This becomes a disadvantage of ViT in the context of
few-shot learning due to the challenging low-data problem, which has been mitigated but not fully
resolved by our data generation approach. Secondly, transformers generally incur a high compute
cost when applied to high-dimensional sequences due to the quadratic complexity of the self-attention
mechanism. Therefore, the applicability of ViT is greatly restricted to longer sequences of images.
[10]. Moreover, compared to the conventional CNNs, the transformer did not have the advantage in
local connectivity and spatial invariance biases inbuilt in the CNN structure. A potential solution is
to try to improve the efficiency by including inductive biases and leverage learning the rich visual
patterns with local connectivity and spatial invariance, as suggested in [4]. This can be a future line
of research.

8 Conclusion

We propose a simple but very effective strategy for calibrating and leveraging the large auxiliary set
and the limited data in support set in the few-shot learning task for image classification. Without any
training process, our Weighted-distribution Calibration (WC) strategy can be implemented agnostic
to the backbone feature extractor and classifier. Our work focus on efficiently and effectively utilizing
all possible information when given a specific task. A simple ResNet-12 backbone feature extractor,
only pretrained on miniImageNet, combined with a simple Logistic Regression classifier can reach
an accuracy of 63.87% with our WC strategy, which is nearly the state-of-the-art accuracy in FSL.

On the other hand, Vision Transformers did not show effective results in our experiments. As
discussed in Section 7.2, unlike CNN which performs well in the presence of small datasets, Vision
Transformer itself requires a large amount of dataset to pre-train, and our training set size may not be
large enough for the transformer to learn. However, given the aforementioned advantages of Vision
Transformer, we believe there are potentials of ViT in few-shot learning. In the future, researches can
be done on training transformers with larger datasets to better fit this backbone for few-shot learning.
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