Yun Cheng

	kapikantzari.github.io yuncheng@cs.cmu.edu (412) 773-28	13	
RESEARCH INTERESTS	Theoretical machine learning, multimodal machine learning, representation learning, neuroscience-inspired algorithms		
ACADEMIC BACKGROUND	Princeton University Incoming Ph.D. in Computer Science	Princeton, NJ September 2023	
	 Carnegie Mellon University M.S. in Machine Learning GPA 4.14/4.33 Advised by Prof. Louis-Philippe Morency 	Pittsburgh, PA December 2022	
	• Selected Coursework: Intermediate Deep Learning, Machine Learning in Prac- tice, Probalistic Graphical Models, Convex Optimization, Advanced Multi- modal Machine Learning		
Carnegie Mellon University B.S. in Computer Science (University Honors) B.S. in Discrete Mathematics and Logic (University & C GPA 3.85/4.0		Pittsburgh, PA December 2021 ge Honors)	
	• Selected Coursework: Intro to Deep Learning, Probab Statistics (PhD), Multimodal Machine Learning, Intr (PhD), Design and Analysis of Algorithms, Distributed	ility and Mathematical o to Machine Learning Systems, Graph Theory	
PUBLICATIONS & PREPRINTS	 PP. Liang, Y. Lyu, X. Fan, Z. Wu, Y. Cheng, J. Wu, L. Chen, P. Wu, M. A. Lee, Y. Zhu, R. Salakhutdinov, L. Morency, MultiBench: Multiscale Bench- marks for Multimodal Representation Learning, In <i>Proceedings of the Neural</i> <i>Information Processing Systems Track on Datasets and Benchmarks (NeurIPS)</i>, volume 1, 2021. 		
	 Y. Cheng, Y. Liu, T. Tkocz, A. Xu, Typical Values of binatorial Structures with Independent Symmetric We arXiv:2211.12348, to appear in Electron. J. Combin. 	Extremal-Weight Com- eights, Preprint (2021),	
	 PP. Liang, Y. Cheng, X. Fan, C. K. Ling, S. Nie, R. Chen, Z. Deng, F. Mah- mood, R. Salakhutdinov, L. Morency, Quantifying & Modeling Feature Interac- tions: An Information Decomposition Framework. Submitted for publication. 		
	 PP. Liang, Y. Cheng, L. Morency, R. Salakhutdinov, Multimodal Fusion In teractions: A Study of Human and Automatic Quantification. Submitted fo publication. 		
	 PP. Liang, C. K. Ling, Y. Cheng, A. Obolenskiy, Wilf, L. Morency, R. Salakhutdinov, Multimodal Lea Multimodal Data: Guarantees and Applications. Subm 	Y. Liu, R. Pandey, A. rning Without Labeled itted for publication.	
	 PP. Liang, Y. Lyu, X. Fan, A. Agarwal, Y. Cheng Salakhutdinov, MultiZoo & MultiBench: A Standard modal Representation Learning. Submitted for publica 	g, L. Morency, and R. ized Toolkit for Multition.	

RESEARCH EXPERIENCE	Carnegie Mellon University, Multicomp LabPittsburgh, PAResearch AssistantNovember 2020 - Present• Evaluated the robustness of 20 state-of-the-art multimodal approaches and proposed a new benchmarking methodology that assesses the generalizability and modality robustness of multimodal models		
	 Proposing a latent concept representation model, generalizing utility statistics of each input modality from synthetic to real-world distributions, and proposing multimodal model selection guidelines for reliable deployment of multimodal models Adapting personalized federated learning in learning privacy-preserving markers of mood from partially observed mobile data and improving the performance in capturing individual mood fluctuations 		
	 CMU Summer Experiences in Mathematical Sciences (SEMS) Pittsburgh, PA Research Assistant June 2020 - January 2021 Established asymptotically tight bounds for expected value of combinatorial structures when weights are independent symmetric random variables (satisfy- ing a mild condition on tail probabilities) 		
	 CMU Summer Undergraduate Research Apprenticeship (SURA) Pittsburgh, PA Research Assistant May 2019 - August 2019 Constructed binomial models for discontinuous change in investment strategy with two-tier incentive and solved the optimization problem with respect to optimal portfolio and payment coefficients 		
	WORK EXPERIENCE	Amazon RoboticsRemoteSoftware Development InternMay 2021 - August 2021• Developed self-contained metric generators for postprocessing performance data of simulation runs and incorporated them into the simulator pipeline	
COURSE PROJECTS	 Carnegie Mellon University Pittsburgh, PA Improving Semantic Relation Prediction using Global Graph Properties Extended the graph motifs of ERGMs to include combinatorial features to help constrain local predictions, replaced negative sampling with hierarchical softmax, and improved computation efficiency and performance on infrequent words 		
	 Few-Shot Learning for Images Proposed a weighted distribution calibration to alleviate bias of distribution of novel classes by generating data from a calibrated distribution using transferred statistics of all base classes 		
	 Action Segmentation on Large Egocentric Cooking Dataset Proposed the first multimodal approach in video action segmentation that refines unimodal video segmentation results with a video-to-text retrieval module 		
	Emotion Detection with Ensemble-based CNN • Applied transfer learning and ensemble modeling, obtained 5.4% performance		

• Applied transfer learning and ensemble modeling, obtained 5.4% performance gain and improved interpretability using occlusion-based saliency maps

TEACHING	Carnegie Mellon University	Pittsburgh, PA	
EXPERIENCE	 Teaching Assistant 11-877 Advanced Multimodal Machine Learning January 2023 - May 2023 Led group discussions on recent technical challenges with multimodal representation, alignment, reasoning, generation, co-learning, and quantification 		
	 11-866 Artificial Social Intelligence Led group discussions on theories and ethical implication and real-world applications in social robotics and after the social robotics and after the social robotics. 	January 2023 - May 2023 ations of social intelligence fective computing	
	 11-777 Multimodal Machine Learning Mentored 5 team projects on visio-linguistic compose and multimodal emotion recognition 	August 2022 - May 2023 itionality, multimodal QA,	
	• Guided the teams in exploring research ideas in multimodal representation, fusion, and translation, and provided dedicated feedback for each milestone		
	10-301/601 Intro to Machine Learning Janu • Led recitation and designed homework/exam question	tary 2021 - December 2021 ons for $500+$ students	
	• Received Machine Learning TA award		
	 21-128/15-151 Mathematical Concepts and Proofs August 2019 - December 2020 Led recitation and designed homework/exam questions for 300+ students 		
	21-127 Concepts of MathematicsHosted office hours for 50+ students and provided p	May 2020 - August 2020 personal tutoring	
HONORS	Mathematics Prize	2022	
& AWARDS	CMU SCS DEI Grace Hopper Sponsorship	2022	
	Machine Learning TA Award Dean's List, High Honors	$2020-2021 \\2018-2022$	
SKILLS	Programming Languages: Python (NumPy, PyTorch, Tensorflow, Scikit-Learn, CVXPY Pandas, Matplotlib), C/C++, Java, Go, Standard ML Languages: English, Mandarin (Native or Bilingual)		
PROFESSIONAL	Reviewer	2022	
SERVICE	NeurIPS 2022 Track Datasets and BenchmarksProvided detailed revision comments for two submis	ssions	